Comparison of Metal Flow Characteristics in Aluminium Extrusion Die using Numerical Simulations for AA6063 and AA7075
Main Article Content
Abstract
Aluminium extruded profiles are used for light weight structures used in architecture, transportation, aerospace, industrial sectors etc. Increasing use of profiles for applications has been driving extruiders to focus on reliable techniques to produce profile that meet consistent quality. In aluminium extrusion, profitability can be achieved by pushing maximum number of billets i.e maximum speed during production. However, in the shopfloor different aluminium alloys and geometries are limited by manufacturibility limitations which based on alloy properties and metal flow charcateritics. Hence, product quality is largely dependant on the closer control of metal flow charcateritics that can be compensated by right quality aluminium billet and die design paramaters. In this regard, numerical simulation studies have been adopted prior to production to ensure the consistent and reliable quality of profiles. In this technical communication, metal flow characteristics such as velocity, temperature and strain rate in an extrusion die were compared using numerical simulation studies for two alloys namely AA6063 and AA7075.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).