Thermal Characteristics of a Cylindrical Heat Pipe using Multi-Layer Screen Mesh Wick
Main Article Content
Abstract
Heat pipe is the most widely used heat exchanging device in removal of heat from any given system at a faster rate. The thermal characteristics of heat pipe with single and multi-layered screen mesh wicks have been observed with two working fluids water and acetone. Heat pipe of length 250 mm and 12.7 mm outer diameter, made of copper material is used in all the trials of with and without wick structure. A 100 mesh stainless steel screen wire mesh is chosen as wick structure. Experiments were conducted at different heat loads and various inclinations with 100% fill ratio in evaporator. The performance is measured based on total thermal resistance and overall heat transfer coefficient. The heat pipe is found effective at 60o inclination with acetone as a working fluid and with four layered screen mesh wick. Uncertainty in thermal resistance and heat transfer coefficient is calculated for a heat input of 10W at 0ï‚° and 60ï‚° inclinations.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).