Robust Model Reference Fault Detection and Identification System for Fixed Wing Aircrafts
Main Article Content
Abstract
Fault Detection and Identification system (FDI) and Fault Tolerant Flight Control (FTFC) system are used to correct the faulty operation of an aircraft. Both FDIs and FTFCs have operational disadvantages due to their inherent limitation of fault source identification. This paper presents the design and implementation of a robust model reference fault detection and identification (MRFDI) system on a fixed-wing aircraft for identifying actuator fault, instrument fault and presence of any uncertainties. The proposed MRDFI fuses the real-time parameters and actuator feedback to combine the advantages of data driven and model reference FDI that makes robust fault estimation. The MRFDI system is implemented on a typical aircraft altitude hold autopilot simulation environment with a predefined fault scenario. The fault scenario includes a faulty elevator, a faulty skin-implantable sensor and wind gust as environmental uncertainty. The MRFDI performs logical analysis to detect fault using state-dependent real-time parameters and state-independent skin implantable sensor. This two-step fault detection method makes MRFDI robust to any type of fault identification. The results show that the MRFDI detects and distinguishes faults in actuator, instrument and any of the listed uncertainties thrown by the environment accurately.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).