Effect of Intra-Ply Hybridization of Carbon-Aramid/Epoxy Laminates under Tension-Tension Fatigue Loading
Main Article Content
Abstract
The objective of the research is to investigate the fatigue life of intra-ply hybrid Carbon-Aramid laminate with Epoxy resin in on-axis and off-axis directions. Three different off-axis angles of 15, 30 and 45 degrees were considered for the present work. The intra-ply hybridization is used to combine the superior mechanical properties of Carbon fibre with excellent elongation-to-failure property of Aramid fibre in the same lamina. The fatigue test was performed using load control using a frequency of 5Hz. The fatigue behaviour was studied for Carbon/Epoxy, Aramid/Epoxy, Carbon-Aramid/Epoxy, Carbon-Aramid/Epoxy - 15, Carbon-Aramid/Epoxy - 30 and Carbon-Aramid/Epoxy - 45 with the stress ratio of R = 0.1. The ultimate tensile strength decreases progressively for Carbon/Epoxy, Carbon-Aramid/Epoxy, Aramid/Epoxy, Carbon-Aramid/Epoxy - 15, Carbon-Aramid/Epoxy - 30 and Carbon-Aramid/Epoxy - 45. The effect of off-axis loading indicates that the increase of fibre angle influences the decrease in tensile strength and fatigue life.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).