Intensification of Heat Transfer in a Double Tube Heat Exchanger with Nano-Fluids and Trapezoidal Cut Twisted Tape - A Numerical Study
Main Article Content
Abstract
The heat transfer enhancement is normally demanded in industries for heating, cooling and evaporation in the equipment’s like air conditioning, radiators and refrigerators etc. The passive, active or combination of them usually employed for intensification of heat transfer in such heat exchangers. In this study, we focus on an innovative passive technique. The dual approach is to increase the conductivity of the suspended nano-particles such as titanium dioxide, beryllium oxide or beryllia, zinc oxide and copper oxide in the water. The flow resistance is offered by inserting the twisted tape with trapezoidal cut. The objective of the numerical study is to investigate the thermal and flow fields by utilizing various types of nano-fluids with and without twisted tape in the double tube heat exchanger. The finite volume method is employed to solve the continuity, momentum and energy equations.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).