Determination of Engine Misfire Location using Artificial Neural Networks
Main Article Content
Abstract
Misfire in spark-ignition engines is one of the major faults that affect the power produced by the engine and pollute the environment and may cause further engine damage. This paper presents an evaluation of an artificial neural network based performance system through three most popular training algorithms namely Gradient Descent, Lavenberg-Marquadt and Quasi-Newton to determine the misfire location. Misfire is simulated by removing ignition coil to that cylinder namely Cylinder 1,2,3,4 and Cylinders 1 and 2, 1 and 4 and 2 and 3 with three different conditions such as idle, 2000 rpm and 3000 rpm. The results showed that the Quasi-Newton is higher in recognition rate average of 98.19 % but it takes more time to train. The Lavenberg-Marquardt algorithm is also good with an average recognition rate of 96.09 % with the fastest performance than Quasi-Newton. The gradient descent algorithm requires the network size to be more complicated to perform well with least time and high recognition rate.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).