Vehicle Emission Analysis by using Refined Sunflower Oil as Alternate Fuel and Varying the Injection Timing in Diesel Engine
Main Article Content
Abstract
In this study, the emissions of Kirloskar Direct Injection 4-stroke Diesel engine, single cylinder air cooled, 4.4 kW, constant speed at 1500 rpm, compression ratio 17.5:1 with different blends of diesel refined sunflower oil is analysed. Methyl Esters of refined sunflower was trans-esterified before blending with diesel. The main objective of this experiment is to study the NOx, CO, HC and smoke emissions by varying the injection timing and load. The experiments were conducted with various blends - BRSF10, BRSF30, BRSF40, at different pressures (180 bar, 210 bar, and 240 bar) and different level of loads (0%, 25%, 50%, 75%, 100%). A 3-hole nozzle was used to inject the fuel. The combustion results were studied using AVL gas analyser. The results show that engine temperature decreases at higher loads by 2°, NOx and CO decreases and there was a marginal increase in HC and the exhaust temperature.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).