Experimental and Numerical Study on Crashworthiness Parameters of Mild Steel Square Tube under Quasi-Static Axial Compression
Main Article Content
Abstract
In the present research, an experimental and numerical study on the crush response of square tube is presented. The explicit Finite Element Analysis (FEA) in LS-DYNA software is carried out to simulate crash behaviour under the quasi-static test conditions. Compression load is applied quasi-statically in an experimental study on the square tube specimens using Universal Testing Machine (UTM). In quasi-static test the bottom platen speed used is 1 mm/min. From experimental testing symmetric collapse mode is observed in all deformed specimens. The development of the symmetric collapse mode in a Finite Element (FE) model is also observed. Thus fold formation and crush response predicted by FE analysis are observed to be in very good correlation with the results obtained from experimental testing. Furthermore, the effect of the thickness of tube on crashworthiness parameters is investigated. From the FE analysis, it is found that the thickness of the square tube influences significantly the crashworthiness parameters.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).