Heat Transfer Investigation with Multiple Jet Impingement

Main Article Content

Niranjan Murthy
B.K. Naveenkumar

Abstract

An experimental study was carried out to study the effect of multiple jet impingement on a virtual electronic component using water and air as working fluids. It consists of an electrically heated test plate of size 20mm×20mm. Heat flux is varied between 25 to 250W/cm2 was dissipated using 0.25 and 0.5mm diameter jets placed in a 7×7 array with a pitch of 3mm. The difference in temperature between test surface and fluid inlet is within 30 degC for water jets and within 75 degC for air jet experiments. Experiments were conducted by changing the heat flux, flow rate and distance between the test surface and jet exit and [iv] horizontal and vertical positioning of the jets. It was found that heat flux, jet diameter and Reynolds number are important factors in determining the heat transfer. The effects of distance between test surface and jet exit [Z] and positioning of the jets were insignificant. Though the multiple jet impingement heat transfer problem is complex, the heat transfer results could be correlated using a simple relationship in the form of Nu = AqmRen. The constant (m) which indicates the effect of heat flux has the value of 0.8 and 0.9 depending upon the jet diameter and the coolant. The constant (n) which indicates the influence of Reynolds number has the value of 0.25 for both water and air jets. The value of constant (A) is different for water and air jets. The correlation developed in this research work can be effectively used to design multiple water and air jet cooling system for electronic components.

Article Details

Section
Articles