Numerical Prediction of the Bending Fatigue Crack Propagation Behaviour in Asymmetric Spur Gears
Main Article Content
Abstract
The damage tolerance of a component is crucial for achieving a reliable and smooth operation. The crack propagation in a spur gear critically affects the performance of the transmission system. Asymmetric gears are used for enhancing the load-carrying capacity by increasing the pressure angle of a flank beyond the conventional limits. In this study, the effect of initial crack inclination angle and length in the tooth fillet region on the Stress Intensity Factor (SIF) and the crack path of an asymmetric gear (34°/20°) were studied using numerical simulations. Quasi-static analyses were performed in FRANC2D. The crack propagation life was calculated using Paris law. Results revealed that tooth asymmetry has no effect on the crack path. However, asymmetric tooth form caused a reduction in the SIF value and increased the critical crack length, leading to an increased crack propagation life and damage tolerance.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).