Modeling and Simulation of an Electric Vehicle with Independent Rear Motors to Estimate the Fuel Economy during EPA Drive Cycles
Main Article Content
Abstract
The “Car of the Future†project converted a 2015 rear-wheel drive (RWD) Subaru BRZ into a hybrid electric vehicle (HEV) with an intermediate milestone of a battery electric vehicle (BEV). BEV architecture required removal of the conventional powertrain components, such as internal combustion engine, transmission and differential, introduced an electric axle and battery. This intermediate BEV step provided a point at which the vehicle could be evaluated in its all electric operation with the absence of what was once critical components including its original powertrain and powertrain electronics. This step also ensures the electric components are working properly before more complexity is added to the system in building HEV. In our previous work, BEV Vehicle Technical Specifications (VTS) or requirements were developed and an electric axle was appropriately sized and selected to meet these requirements. After selecting the electrical axle with independent rear motors that will meet BEV performance requirements, Environmental Protection Agency (EPA) fuel economy rating of the BEV should be assessed. This paper presents a drive cycle analysis of the BEV vehicle using the EPA Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel Economy Test (HWFET) drive cycles by means of dynamic modeling and simulation. In this study, the power required at the wheels, the efficiency of each motor and the energy required at the selected electrical axle were determined. In addition, the city, highway and combined miles per gallon equivalent (MPGe) fuel economy were determined.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).