Effect of Inlet Plenum on Pressure Drop and Velocity in Fractal Micro Channels
Main Article Content
Abstract
The computational analysis for micro channel flow in a branched network was investigated by three dimensional CFD approach. The effect of the change of Inlet Plenum (IP) size at a constant Aspect Ratio (AR) of the outermost channel on pressure drop in a fractal branched micro channel was performed. The properties are compared along a particular path and it was observed that the pressure drop along a bifurcated path has considerably less effect when compared to that of the outer most straight branched channel for a constant aspect ratio model. Pressure does not change significantly if we change the IP radius even when all other parameters are constant. Velocity in the inner channel after a straight run has reduced significantly even for same AR and Reynolds Number (Re). This leads to the conclusion that the IP size affects the velocity after the bifurcation.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).