Intelligent Collision Avoidance Method for Motion Obstacles of Unmanned Vehicles

Main Article Content

Hongge Zhang

Abstract

At present, the active technology of automobiles is becoming more and more mature and the emergence of driverless vehicles makes it a hotspot in the field of road safety. A new intelligent collision avoidance method for unmanned vehicle motion obstacles is proposed. The kinematics model of unmanned vehicles is established and linearized to obtain the kinematics linear tracking error model of unmanned vehicles and predict the future behavior of unmanned vehicles. The intelligent collision avoidance can be achieved by improving the artificial potential field model of the unmanned vehicle after understanding the future behavior and obstacle information of the unmanned vehicle. The experimental results show that the method has a high detection rate and success rate of obstacle avoidance and low total time-consuming in the process of behavior selection and path planning. It can quickly make collision avoidance responses and reduce the possibility of collision.

Article Details

Section
Articles