Automatic Vehicle Route Prediction based on Multi-Sensor Fusion
Main Article Content
Abstract
To solve the problem of inaccurate results of vehicle routing prediction caused by a large number of uncertain information collected by different sensors in previous automatic vehicle route prediction algorithms, an automatic vehicle route prediction algorithm based on multi-sensor fusion is studied. The process of fusion of multi-sensor information based on the D-S evidence reasoning fusion algorithm is applied to automatic vehicle route prediction. According to the contribution of a longitudinal acceleration sensor and yaw angular velocity sensor detection information to the corresponding motion model, the basic probability assignment function of each vehicle motion model is obtained; the basic probability assignment function of each motion model is synthesized by using D-S evidence reasoning synthesis formula. The new probability allocation of each motion model is obtained under all evidence and then deduced according to the decision rules. Guided by the current optimal motion model, the optimal motion model at each time is used to accurately predict the vehicle movement route. The simulation results show that the prediction error of the algorithm is less than 4% in the process of 30 minutes of automatic vehicle route prediction.
Article Details
Issue
Section
Articles

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).