Clustering Algorithm for Vehicle’s Driving Data Feature based on Integrated Navigation

Main Article Content

Na Guo
Yiyi Zhu

Abstract

The clustering result of K-means clustering algorithm is affected by the initial clustering center and the clustering result is not always global optimal. Therefore, the clustering analysis of vehicle’s driving data feature based on integrated navigation is carried out based on global K-means clustering algorithm. The vehicle mathematical model based on GPS/DR integrated navigation is constructed and the vehicle’s driving data based on GPS/DR integrated navigation, such as vehicle acceleration, are collected. After extracting the vehicle’s driving data features, the feature parameters of vehicle’s driving data are dimensionally reduced based on kernel principal component analysis to reduce the redundancy of feature parameters. The global K-means clustering algorithm converts clustering problem into a series of sub-cluster clustering problems. At the end of each iteration, an incremental method is used to select the next cluster of optimal initial centers. After determining the optimal clustering number, the feature clustering of vehicle’s driving data is completed. The experimental results show that the global K-means clustering algorithm has a clustering error of only 1.37% for vehicle’s driving data features and achieves high precision clustering for vehicle’s driving data features.

Article Details

Section
Articles