Clustering Algorithm for Vehicle’s Driving Data Feature based on Integrated Navigation
Main Article Content
Abstract
The clustering result of K-means clustering algorithm is affected by the initial clustering center and the clustering result is not always global optimal. Therefore, the clustering analysis of vehicle’s driving data feature based on integrated navigation is carried out based on global K-means clustering algorithm. The vehicle mathematical model based on GPS/DR integrated navigation is constructed and the vehicle’s driving data based on GPS/DR integrated navigation, such as vehicle acceleration, are collected. After extracting the vehicle’s driving data features, the feature parameters of vehicle’s driving data are dimensionally reduced based on kernel principal component analysis to reduce the redundancy of feature parameters. The global K-means clustering algorithm converts clustering problem into a series of sub-cluster clustering problems. At the end of each iteration, an incremental method is used to select the next cluster of optimal initial centers. After determining the optimal clustering number, the feature clustering of vehicle’s driving data is completed. The experimental results show that the global K-means clustering algorithm has a clustering error of only 1.37% for vehicle’s driving data features and achieves high precision clustering for vehicle’s driving data features.
Article Details
Issue
Section
Articles
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).