Thermo-Structural Analysis of Brake Disc-Pad Assembly of an Automotive Braking System
Main Article Content
Abstract
Braking is a phenomenon of stabilizing a moving vehicle to rest by actuating the braking system. The available kinetic energy from the dynamic body is transformed into mechanical energy by the braking system which is further converted into thermal energy for its dissipation into the surroundings. During the process of braking, the frictional contact between the brake disc and brake pad creates enormous amount of heat elevating the temperature of the system to a higher level. The objective of this numerical study is to minimize the heat produced during the braking process. Three unique ventilated brake disc and two brake pad profiles were developed using PTC Creo modelling tool and were subjected to ANSYS workbench to evaluate its thermal and structural performance with a braking cycle time of 4.50 sec. Total deformation, equivalent stress, temperature distribution and total heal flux were assessed. Based on the study, ventilated disc 3 can be the possible design with either of the brake pad profiles for effective usage in the automotive braking system.
Article Details
Issue
Section
Articles
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).