Simulation of Liquid Fuel Combustion of a Rocket Engine
Main Article Content
Abstract
For a successful ignition, the ignition should happen at the right time and place. If the ignition is not performed correctly, then substantial damage can occur both within and outside the engine surface. During ignition, the propellants should mix in a proper proportion. During the injection of propellant, the pressure and temperature are generally in subcritical condition. When they are injected inside the combustion chamber, they rapidly grow and transform into supercritical. The combustor shape is utilized to reduce the intention mixture rate and the computational domain encompasses the portion of this design. This is studied in this work by varying the inlet angles of the fuel. By changing the inlet angles (2.5, 5 and 7.5), the initial ignition time can be reduced. The simulations are done using ANSYS Fluent. The initial turbulence is reduced up to a certain angle and then, it starts decreasing. In the same way, the difference is observed in chamber pressure which rapidly increases, followed by a decrease. It can be concluded that 5 angle shows better performance in terms of pressure and velocity turbulence.
Article Details
Issue
Section
Articles
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).