Design and Parametric Study of Counter-Rotating Propeller of Unmanned Aerial Vehicles for High-Payload Applications based on CFD-MRF Approach
Main Article Content
Abstract
The compact Unmanned Aerial Vehicles (UAVs) implementation in real-time applications is emerging everywhere because of its compact size, high accuracy, etc. But in the case of high payload based applications mini UAVs are unfit to execute the mission due to the increment in the propeller's dimensions to overcome high payload. To overcome such increment in geometry of a mini UAV for high payload issue, the co-axial propeller based propulsive system is the best alternate, which can be able to provide high thrust with compact size and more stability. Therefore, the study about co-axial propeller and its performance has emerged. Similarly, this work also deals with the comparative investigation about the cumulative thrust force effect on co-axial propeller. Aerodynamic force calculation on the co-axial propeller is executed with the help of standard aerodynamic formulae for validation purposes. The conceptual design of the co-axial propeller is modelled in CATIA. Numerical estimation of aerodynamic forces on UAV's co-axial propeller is analysed with the help of ANSYS Fluent. After the drag comparison, the distances between the propellers in the co-axial set-up are modified for optimization. Finally, the different models undergone comparative numerical simulation and thereby optimization took place.
Article Details
Issue
Section
Articles
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).