Innovative Material Systems for Composite Vehicle Structures
Main Article Content
Abstract
Prepreg-based materials currently used in high-end applications as well as SMC/BMC-based materials used in automotive body panels are not likely to lead the future growth in the application of fibre-reinforced composites in primary as well as secondary vehicle structures. Out-of-autoclave techniques based on rapid fibre preforming and part consolidation will drive the structural composites applications in aerospace and automotive sectors. Fibre preforming has been identified as a key bottleneck in the composites supply chain, considering recent growth predictions in civil airframe and automotive markets. Automated Tape Laying machines have modest deposition rates, and global autoclave capacity is not likely to cope with projected growth rates in composites. This paper investigates the potential for near-net preforming using conventional textile technology as well as robotic approaches. Robotic or multi-axial machines have been shown to extend the preforming capability of weaving, braiding and stitching concepts. A multi-axial weaving machine, equipped with automated trimming of non-interlaced tows, can create 3D woven preforms tapered in width as well as length directions. 3D preforms with through-thickness reinforcement have been created with a robotic system equipped with dry fibre lay-up and tufting capability. A 9-axis complex winding machine in conjunction with braiding has been demonstrated for preforming over complex mandrels.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).