An Experimental Study on the Emission Characteristics in CI Engine using Nano Particle Coated Catalytic Converter
Main Article Content
Abstract
A proven viable technology to reduce vehicular exhaust gas emission is the catalytic converter. Although catalyst converters are an effective and efficient method to react to certain pollutants, they are expensive due to the use of noble metals like palladium, platinum and rhodium. Various research has been carried out to find a viable alternative to the noble metal catalyst that can react over vehicular pollutants such as oxides of nitrogen (NOx), carbon monoxide (CO), unburnt hydrocarbon (UBHC) and particulate matter (PM) emitted by the combustion of hydrocarbon burnt internal combustion engine. This paper investigates the emission characteristics of a nano-particle-coated catalytic converter in a conventional fossil-fuelled compression ignition engine. The catalyst used in the research is a nano-particle of metal oxides such as aluminium oxide (nano-sized Al2O3) particle and titanium oxide nano-sized (TiO2) particle. This catalyst is less expensive compared to a noble catalyst. Experiments were made on a single cylinder four strokes water-cooled diesel-fuelled compression ignition engine with a catalytic converter coated with alternative nano-particles. The exhaust gas was allowed to pass through the nano-sized catalyst deposited over the honeycomb structure of the substrate of the catalytic converter and the emission was measured using a five-gas analyser. The result showed a decreased level of oxides of nitrogen.
Article Details
Issue
Section
Articles
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).