Influence of Nano Material Coating on the Automotive Brake Liner – An Investigational Approach
Main Article Content
Abstract
It is very advantageous to have a solid grasp of the thermo-elasticity property of the material while designing an automobile brake at an early design stage. To ensure mechanical brakes' longevity and compactness, which are both crucial in this application, it is recommended that the accurate prediction technique of maximum structural stress be employed throughout the design process for mechanical brakes. As a consequence of this research, a practical and dependable analytical approach for the design of mechanical brakes has been developed, which makes use of modelling and analysis methodologies to accomplish its objectives. In this research, the stress analysis of an automobile's brake was carried out, with the purpose of minimising the stress and pressure created in the brake as a result of the vehicle braking. The complete investigation of the brake, as well as the modelling of the brake, will be carried out using the ANSYS software. The CAD software called CATIA will be used to do the clutch analysis. It is envisaged that this effort will also contribute to the creation of the most efficient and dependable mechanical brake design in the future. In this study, we investigate the structural, thermal and wear behaviour aspects of brake shoe liners coated with nano composite coating materials such as ZrO2 to see how they perform.
Article Details
Issue
Section
Articles
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).