Effect of Natural Frequency in a Low Mass Flexible Vertical Slender Beams
Main Article Content
Abstract
In this paper thermal-structural behaviour of an internally heated vertical low mass cantilever beam was analyzed by a mathematical model and finite element analysis. The obtained results are verified with experimental results. The analysis shows that when natural frequency of the beam is in the range of 0.788 to 1.051Hz thermally induced vibrations occur. This indicates that determining natural frequency of the beam is more important than the heating rate. Outside the range of 0.788 to 1.051 Hz, thermally induced vibrations are absent since thermal moment developed due to temperature difference is insufficient to drive the beam.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).