Topology Optimization of Wing Ribs for Additive Manufacturing
Main Article Content
Abstract
This paper describes the design of a lightweight wing rib structure by combining topology optimisation with additive manufacturing. In addition, a deep feed-forward neural network model is proposed to perform the load prediction for the constructed wing structure incorporated with this optimised rib. The strain energy of the front rib has a minimum strain energy 1330 J for the initial volume state when the topology is not optimised for lightweighting. The relative error of the load prediction values obtained by the output layer of the deep feed-forward neural network is less than 0.02%. The absolute error of the small load prediction was less than 0.30 N. The presented results demonstrate the viability of additive manufactured rib and its implementation in global wing load prediction model for faster designs.
Article Details
Issue
Section
Articles
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).