Implementation of Enhanced Chimp Optimization Algorithm in Cognitive Radio Networks for Vehicular Mobile Communication
Main Article Content
Abstract
In recent years, 6G technology has been extended to many different applications, especially mobile communications. As a result, the volume of mobile data increases, which poses a problem with the load on the plane of control (IoE, IoT). This problem is solved by efficient use of resources and reduced power consumption in cognitive radio networks (CRNs). In the literature, many methods have been developed by researchers to control spectrum sensing as well as energy -efficient operation, but they still need to be improved to improve system efficiency and processing power. Therefore, in this paper, an energy efficient method for Opposition Function -based Chimpanzee Optimization Algorithm (OFCOA) is developed in CRN for energy management as well as resource allocation. The proposed method is a combination of Opposition Function (OF) and Chimpanzee Optimization Algorithm (COA). In COAs, the optimal decision process is enhanced by the use of OF. The proposed method provides energy efficient operation in CRN through energy management taking into account spectrum measurements. The proposed method was tested under four Primary User (PU) and Secondary User (SU) conditions with channel occupation and CRN findings. The proposed methodology is implemented in MATLAB and performance is measured based on performance metrics such as processing power, network life, transmission rate, delay, flush, power consumption and overhead. The performance of the proposed methodology is compared with traditional methods such as Chimpanzee Optimization Algorithm (COA), Whale Optimization Algorithm (WOA) and Particle Swarm Optimization (PSO).
Article Details
Issue
Section
Articles
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).