GWO based Robust Stabilization of DC Motor Fractional Order Speed Control System with Interval Coefficients
Main Article Content
Abstract
Robust stability analysis (RSA) is of significant concern for the robust behaviour of real-world control system applications. A stabilization strategy that assures stability and exhibits robust performance for a specified limit of system perturbations is necessary. This article presents an optimal robust stabilization method for a closed loop fractional order proportional integral derivative (FOPI^λD^µ) system involving DC motor with interval parametric uncertainty. To determine the optimum value of parameters for a FOPI^λD^µ controller to control the speed of a DC motor, Grey Wolf Optimizer (GWO), Genetic Algorithm (GA), Nelder-Mead (NM), Jaya and Whale Optimizer Algorithm (WOA) are applied with the same objective function involving ITAE criterion. FOPI^λD^µ offers two additional tuning parameters unlike a nominal PID controller and hence the former gives more flexibility in controller design than the latter in terms of transient response. The FOPID controller provides a faster closed-loop output augmented with improved robust properties of the system. Despite inherent non-linearities and time variation in system parameters, FOPI^λD^µ controllers depict enhanced performance. Using the concept of conformal mapping, robust stability analysis of fractional order polynomials is done with uncertain interval structure using Vertex and Edge theorem. Based on the value set, this paper demonstrates numerical and graphical optimal robust stability analysis of a system with variations observed in five parameters, considering the minimum argument root of the polynomial of the aforementioned closed-loop system.
Article Details
Issue
Section
Articles
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).