Spectral Optimization of High-Speed Train Suspension Systems
Main Article Content
Abstract
In this paper, an optimal suspension system for high-speed passenger trains is proposed based on a spectral analysis in frequency domain. In the optimization procedure, the ride quality and the fatigue life of the suspension system are simultaneously taken into consideration as objective functions. Spectral densities for the coil spring shear stress and the vertical acceleration are obtained using a spectral approach. A multi-variable optimization is carried out using genetic algorithms. Four design parameters including the damping properties of the secondary and primary suspension, and the wire diameter of their coil springs are obtained. A comprehensive parametric study is carried out on the effects of travelling speed, level of irregularity and eccentricity of the wagon body on the performance of the optimized system. The influences of any positive and negative deviations with respect to the optimal design parameters on the dynamic responses are also studied.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).