Thermal Analysis of a Disc Brake Model Considering a Real Brake Pad Surface and Wear
Main Article Content
Abstract
Vehicle braking system is considered as one of the most fundamental safety-critical systems in modern vehicles as its main purpose is to stop or decelerate the vehicle. The frictional heat generated during braking application can cause numerous negative effects on the brake assembly such as brake fade, premature wear, thermal cracks and disc thickness variation (DTV). In the past, surface roughness and wear at the pad interface have rarely been considered in studies of thermal analysis of a disc brake assembly using finite element method. This paper attempts to consider these two aspects to predict temperature distributions in a reduced disc brake model. First, two different brake pad interface models, i.e., smooth and rough surfaces are modelled and simulated. Temperature distributions in these two models are then compared. Next, the thermal analysis is performed with the effect of wear at three different braking applications.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).