Weight Reduction in an Indian Railway CASNUB Bogie Bolster Considering Fatigue Strength
Main Article Content
Abstract
Weight and strength are critical measures in the design of a railway bogie. The present work deals with the design of CASNUB bogie bolster of freight rolling stock in Indian Railways. The bogie is modelled using NX3, UGS software. Finite element analysis of the model is performed using MSC Patran/Nastran. Natural frequencies obtained from free vibration analysis are compared with those obtained experimentally using a Rap-Test. Effort has been made to reduce the weight of bogie bolster considering fatigue strength. Bogie loading includes vertical forces, longitudinal emergency brake force and vertical as well as lateral track excitations. Transient analysis of bogie is performed to identify the critical areas and surfaces relevant for weight reduction. Thicknesses of the bolster top, bottom and side surfaces are subsequently identified as design variables. These parameters are optimized using artificial neural network and genetic algorithm techniques. Such optimization has resulted in approximately 7.6% reduction in weight of the bolster. The optimal bogie bolster has been verified for its fatigue strength using Goodman diagram.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).