Effect of Adjacent Teeth Load on Bending Strength of High Contact Ratio Asymmetrical Spur Gear Drive
Main Article Content
Abstract
This paper describes methodology for predicting the bending stress of the spur gear accurately by including the load on the adjacent teeth for high contact ratio asymmetric spur gear drive. Higher contact ratio is obtained by enlarging the addendum from the standard addendum value where as the asymmetric is achieved by keeping various pressure angles (170, 200 and 220) at non drive side while the drive side pressure angle was kept as 200. The bending stress developed for the given load according to the load sharing calculated by using stiffness based method along with the effect of adjacent teeth loads are explored in this work. Computer aided design tool is used for generating the gear tooth profile and ANSYS is used to carry out the finite element analysis. The result shows that the maximum bending stress level in a mesh cycle is increased when the load on adjacent teeth are taken into account. The higher pressure angle at the non-drive side yields lesser stress at the fillet region when compared to the lower pressure angle.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).