Modeling and Simulation of Off-Road Vehicle Mobility with Driving Torque Distribution Control on Split Adhesion Conditions
Main Article Content
Abstract
This paper presents a theoretical model for simulation of driving torque distribution control to improve off-road vehicle mobility on split adhesion conditions. The model is constructed and then validated with experimental test rig results. A MATLAB simulink modeling of an electronically controlled device is used to modulate the applied force over multi-plate clutches located between the automotive driven axle shafts and the stationary hub. On driving over split adhesion roads, the control device brakes the spinning axle wheel running over ground low adhesion side and accordingly biases more torque to the other wheel with good adhesion side. This would improve the vehicle off-road mobility and save the power losses on low adhesion wheels. The proposed control model had been validated with experimental results obtained from an experimental tests conducted on a specially designed and built test rig. Consequently, the proposed control system has been embedded within a full car theoretical model to predict the vehicle performance on split adhesion drive conditions. The results showed that the constructed simulink model is suitable for simulating the proposed controlled device for torque distribution after matching the simulation results with experimental test rig results. Moreover, the proposed control model could be implemented to improve the transmitted traction power to the road from a conventional deferential.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).