Numerical Analysis and Testing of Tungsten Inert Gas Welded T-Joints
Main Article Content
Abstract
Presently arc welded structures are extensively used in automobiles, constructions and power plants. As the main cause of weldment failure is design defect and overload, it is necessary to analyze the maximum stresses in the weldment. This work deals with investigation of welded T-joint by Tungsten Inert Gas (TIG) welding process with varying gap and angle between the parent materials to determine the breaking stress under tensile load in the weldment. Finite element analysis is carried out using Ansys software and results are compared with experimental analysis using Taguchi optimization method. Angle, arc force and gap between parent materials are used for the Taguchi optimization technique. The optimized fillet weld section (low carbon steel AISI1020 and copper) is arrived by restricting the weldment failure.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).