Integration of a Composite Crash Absorber in Aircraft Fuselage Vertical Struts
Main Article Content
Abstract
A crash absorber element integrated in composite vertical (z-) struts of commercial aircraft fuselage structures was developed, which absorbs energy under crash loads by cutting the composite strut into stripes and crushing the material under bending. The design concept of this absorber element is described and the performance is evaluated experimentally in static, crash and fatigue test series on component and structural level under normal and oblique impact conditions. These tests highlight the robustness of the absorber design as this system worked under various conditions and angles with an impressively high reproducibility. The physics of the energy absorption by high rate material fragmentation are explained and numerical modelling methods in explicit finite element codes for the simulation of the crash absorber are assessed. The real physical fragmentation phenomena can just be approximated in simulations, emphasising that the numerical prediction of composite energy absorption for industrial use cases is still a big challenge.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).