CFD Simulation of Fin-and-Tube Heat Exchanger with Louvered Fin Configuration: Technical Note
Main Article Content
Abstract
Heat exchanger plays a major role in almost all mechanical industries. Enhancement of heat transfer surface plays major role in numerous applications such as in heat exchangers, refrigeration and air conditioning systems etc. This paper examines the fluid flow and heat exchange on the air side of a multi-row fin-and-tube heat exchanger. A brief comparison is given between fin-and-tube heat exchanger attributes with louvered fins in a wider range of operating conditions defined by inlet air velocities. The brief representation on the calculated data for the louvered heat exchanger shows better heat transfer characteristics with a slightly higher pressure drop. The CFD procedure is validated by comparing the numerical simulation results with different inlet air velocities. Best combination of higher heat transfer and minimum pressure drop are occurred in inlet air velocity of 2.5 m/s.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).