System Optimization Algorithm for 3DOF Quarter Car Active Suspension
Main Article Content
Abstract
This paper handles the synergy between the design and control optimization problem for an active car suspension system consisting both active and passive components. The dynamics of the suspension system are modeled utilizing a three degree of freedom (3DOF), linear with time invariant quarter car model with capability to capture the impact of the passive stiffness on suspension deflection depending up on the spectral density of road disturbances. Direct transcription, a strategy which guarantees system optimality, is presented and utilized to find the optimal design of the suspension system. The active system dynamics were analyzed with modified level of control force to examine how dynamic system should be designed accordingly when the active control force is introduced.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).