Finite Element Modelling of Bi-Material Interface for Crack Growth Evaluation: Technical Note
Main Article Content
Abstract
Finite element (FE) method is commonly used to study cracks in structures. In this paper, J-integral method is applied over FE model of a cracked body to determine stress intensity factor (SIF) in the domain of linear elastic fracture mechanics (LEFM). This paper formulates the J-integral methodology for 2D FE model using a coarse mesh with less degrees of freedom. Two cases , a finite plate with edge cracks and a normal crack growth in fiber metal laminated plate, are demonstrated. Numerical implementation and mesh refinement issues to maintain path independent J-integral values are explored.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).