Comparison of ANN Training Algorithms for Predicting the Tensile Strength of Friction Stir Welded Aluminium Alloy AA1100
Main Article Content
Abstract
Aluminium alloy AA1100 finds application in light weight structures due to its high strength to weight ratio. Friction stir welding is a solid state welding process, in which the materials are joined in the plasticized state. The quality of the friction stir welded joints depends on the process parameters used and tool parameters. In this study, four process parameters were varied at five levels and experimental trials were performed as per face centered central composite design. Artificial neural network model was developed with cascade forward propagation network architecture and trained with LM algorithm and BFGS QN algorithm. The models were used to predict the tensile strength of the joints and the error in prediction was used to judge the accuracy of the developed models. It is observed that BFGS QN algorithm trains the ANN efficiently and results in accurate predictions.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).