Effect of Mg, SiC and Fly Ash Particulates in Aluminium Alloy for Automotive Wheel Rim Applications
Main Article Content
Abstract
For the past few decades the wheels of an automobile are usually made out of alloy materials. Due to the increased demand for peculiarity and enhanced outlook, metal matrix composites can be used for the alloy wheels. They enhance the performance of the vehicle by reducing its weight and thereby increasing its fuel efficiency. Many literature works are initiated and progressed on design and development of automotive alloy wheels. There is a scope for enhancing their properties with reinforcements. This study focuses on manufacturing a novel metal matrix composite material comprising aluminium as metal matrix and magnesium, silicon carbide and fly ash as reinforcements. The newly fabricated composition is tested. The alloy wheel is further analysed using ANSYS. The analysis results are compared with that of the existing aluminium alloy. The obtained results confirm that the proposed metal matrix composite is a reliable replacement for the aluminium alloy.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).