Hybrid Electric Vehicle Emissions Monitoring and Estimation using Artificial Neural Networks: Technical Note
Main Article Content
Abstract
Power is utilized as the prime fuel for hybrid and module electric vehicles in order to build the productivity of commercial vehicles. This paper forecasts the emission factors utilizing discrete Fourier transform, artificial neural networks and hybridization of back propagation algorithm. The DFT facilitates the extraction of the performance indicators which are otherwise called the features. The coefficients of the power spectrum denote the performance indicators. The ANN learns the pattern for emissions from HEVs using these performance indicators. This ANN based strategy offers an optimal control action to detect and reduce the exhaust gas emissions which are hazardous. These vehicles are provided with automated highway traffic Jam assist. Hence the forecast of these emissions offers increased efficiency of 90% to 100% thereby ensuring optimal operating condition for the hybrid vehicles.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).