Computational and Experimental Testing of Aircraft Bell Nozzle: Technical Note
Main Article Content
Abstract
In order to gain the supersonic and hypersonic speed, the nozzle plays a major role in the aviation industry. Based on the nozzle design, the required mach number can be calculated. In this paper, the convergent divergent bell nozzle which is basically used for the supersonic flow is analysed and designed using CATIA Software. The mesh of the designed nozzle is carried out in ANSA and then analysed using CFD. Different nozzle designs are assessed through of CFD analysis to choose the best performing nozzle that can be manufactured for experiments. For the experimental test Raspberry Pi, pressure sensor and Python coding was developed to test bell nozzle pressure.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).