Aerodynamic Investigation on Performance Enhancement of NACA 2412 Airfoil with Suction Assistance
Main Article Content
Abstract
Advanced transport aircraft concept has active boundary-layer control by slot suction which reduces drag by stabilizing the laminar boundary. Thus, the prevention of transition and delaying the boundary layer separation will lead to a higher lift co-efficient. The influence of location and position of suction, suction flow rate and suction hole width on aerodynamic performance have greater influence. These examine the potential payoff for boundary-layer control as applied to the advanced-concept wings. An experimental work deals with the continuous normal suction from the wing upper surface effects on the aerodynamic forces. The wing model with NACA-2412 has been made to achieve normal suction from the wing upper surface by means of four slot channels. The results showed that the continuous normal suction can significantly increase the lift to drag force ratio and this ratio is increasing as the strength of suction increases. There is a convincing decrease in drag and pressure loss and an increase in max lift, which in turn improves the overall performance of the aircraft. While multi-hole suction control can reduce drag much more efficiently than single hole suction control, the position of the suction hole has a greater effect on reducing pressure losses than the suction flow rate.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).