Drag Reduction of TVS Scooty using a Windshield for the Rider Comfort Improvement
Main Article Content
Abstract
Rider comfort and safety has become an essential theme in the design of two-wheeler vehicles. Comfort incorporates wind noise, air pressure on the rider, visibility and the stability of the Scooty handle. Rider comfort and the potential aerodynamics concern have encouraged the current authors to carry out the Computational Fluid Dynamics (CFD) analysis of TVS pep+ Scooty. Numerical computations were carried out using the standard k-ε turbulence model to examine the aerodynamic force coefficients, pressure distribution, velocity vector and streamlines around the Scooty and rider. Simulations were done for a range of speed on an existing and redesigned model of Scooty with a different windshield height. The simulation result shows that there is a reduction in the coefficient of drag (Cd) from 1.58 (baseline model) to 0.95 (model 3) at a speed of 60kmph. The pressure contour reveals the inclusion of the windshield of height 130mm in the baseline model has diminished the pressure drag on the rider. Visual of velocity contour depicts that the velocity of the air decrease above the neck region with in-creasing windshield height at a vehicle speed 120kmph. This study reinforces the need of windshield height of 150mm in the baseline model to avoid unwanted aerodynamic benefits on the rider.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).