Simulation of Blast Induced Traumatic Brain Injury using Finite Element Method
Main Article Content
Abstract
Because of increase in threat from militant groups and during war exposure to blast wave from improvised explosive devices, Traumatic Brain Injury (TBI), a signature injury is on rise worldwide. During blast, the biological system is exposed to a sudden blast over pressure which is several times higher than the ambient pressure causing the damage in the brain. The severity of TBI due to air blast may vary from brief change in mental status or consciousness (termed as mild) to extended period of unconsciousness or memory loss after injuries (termed as severe). The blast wave induced impact on head propagates as shock wave with the broad spectrum of frequencies and stress concentrations in the brain. The primary blast TBI is directly induced by pressure differentials across the skull/fluid/soft tissue interfaces and is further reinforced by the reflected stress waves within the cranial cavity, leading to stress concentrations in certain regions of the brain. In this paper, an attempt has been made to study the behaviour of a human brain model subjected to blast wave based on finite element model using LSDYNA code. The parts of a typical human head such as skull, scalp, CSF, brain are modelled using finite element with properties assumed based on available literature. The model is subjected to blast from frontal lobe, occipital lobe, temporal lobe of the brain. The interaction of the blast wave with the head and subsequent transformation of various forms of shock energy internally have been demonstrated in the human head model. The brain internal pressure levels and the shear stress distribution in the various lobes of the brain such as frontal, parietal, temporal and occipital are determined and presented.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).