Experimental Analysis of Swirl Fuel Injector in Liquid Propellant Rocket Engine

Main Article Content

G. Dineshkumar
D. Gowrishankar
A.R. Abdul Bari
Maruthi Reddy
Dhanushan Sivanesan

Abstract

Fuel injector for a liquid rocket is a very important component since a small difference in its design can drastically affect the combustion efficiency. The primary function of the injector is to break the fuel up into very small droplets. The concept of this project is to perform the fuel atomization with the desired cone angle. This atomization is achieved by passing the fuel through a swirl fuel injector which is connected to the fuel tank and air compressor. Three different orifices of various diameters are designed with different cone angles. The experimental setup consists of a fuel injector with the swirler inside, which is made up of brass with two different vane angles. The air compressor is used for pressurizing the fuel through the injectors. The cold flow experiment is conducted by passing the mixture of air and fuel to get the atomization. The injector is tested with various pressures ranging from 3 to 7 bar for the two cone angles with varying orifice diameters and the different spray patterns are captured. The results are compared, tabulated and correlated with existing values.

Article Details

Section
Articles

Most read articles by the same author(s)