Turbulent Flow in Forced Convection Heat Transfer - Numerical Validation
Main Article Content
Abstract
Forced convective heat transfer of airflow through circular pipe with constant heat input and different free stream velocities is numerically validated. The significance of the present work is that the suction flow has been employed in the forced convection set up domain kept in the wind tunnel. From first law of thermodynamics and applying the energy balance equation, experimental heat transfer coefficient is determined. Further correlations are used to validate the experimental results. Although correlations provide reasonable estimates from the point of feasibility and accuracy, computational methods are used to estimate the convective heat transfer coefficient. Hence in this paper experimental, theoretical and computational analysis is carried out. The results reveal that the numerical validation is an effective tool from the point of feasibility and accuracy to determine the convective heat transfer coefficient.
Article Details
Issue
Section
Articles
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).