Experimental Analysis of Double Pipe Heat Exchanger with V-cut Twisted Tape Inserts using PCM Dispersed Nanofluids
Main Article Content
Abstract
The performance of a double tube heat exchanger with V-cut twisted tape inserts (VCTT) and phase change material (PCM) dispersed nanofluid is investigated experimentally. The three water-based Al2O3, PCM, and Al2O3+PCM nanofluid with different concentrations (0.01-0.1% vol.) are used. The impacts of different geometric parameters, i.e., twist ratio (TR), depth ratio (DR) and width ratio (WR) of VCTT inserts on Nusselt number (Nu), friction factor (f) and entropy generation are examined. The outcomes expose that Nu and f increase as particle concentration increases and twisting ratio decreases. A higher Nu and f are generated by a higher DR or a lower WR. In all cases, the entropy generation of nanofluid is found to be lower than that of water. For all working fluids, a rise in TR, a fall in DR, and a rise in WR increases overall entropy generation.
Article Details
Issue
Section
Articles
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).