Mechanical and Barrier Properties of Cellulosic Nano-Fibers Reinforced Bionanocomposite
Main Article Content
Abstract
Cellulose is one of the most frequently used and generally available materials on Earth and has been utilized for ages in a variety of applications. Numerous researchers have investigated various lignocellulosic sources for the extraction of cellulose and the author has introduced a new source for the extraction of cellulose and cellulosic nanofibers: fruits or seedpods of Delonix Regia (CNF). The solvent casting process is used to create the PVA/CNF composite after the cellulose and CNF have been removed using a mechano-chemical method. SEM, tensile testing, soil burial testing and moisture absorption tests have all been used to examine the morphological, mechanical, biodegradable and moisture absorption capabilities of pure PVA and PVA/CNF composite with 1, 3, 5, 7 and 9 percentages of CNF. According to SEM findings, agglomeration was seen at higher concentrations but uniform and homogenous distribution of nano-fillers was seen at lower percentages of CNF. It is profusely clear from the results of the tensile tests that the percentage elongation initially decreased and then began to increase at higher concentration, while the Young’s modulus and tensile strength initially increased at lower percentages of CNF rapidly and gradually decreased for higher concentration. Pure PVA had the least resistance to degradation in biodegradability test, while the biodegradability test showed that the inclusion of CNF decreased the composite material’s ability to degrade. With the addition of CNF, the rate of moisture absorption decreased, resulting in a PVA/CNF composite material that will last longer and perform better without material degradation.
Article Details
Issue
Section
Articles
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).