Effects of Al2O3 Concentration in Ethylene Glycol on Convection Heat Transfer Coefficient
Main Article Content
Abstract
The energy demand is more in the world due to increase in the populations. The sustainable and clean renewable energy is required to meet the demand. The solar energy with nanofluid used as heat transfer medium is the best alternative source to enhance the rate of heat transfer. The nanofluids are the suspended nano sized particles in the water, ethylene glycol or oil. The stability analysis of Al2O3 ethylene glycol carried out using zeta potential method. The 20nm sized Al2O3 nanoparticles with volume concentration from 0.01% to 1% in ethylene glycol is used as nanofluid to study the effects of concentration on convective heat transfer coefficient (HTC) and wall function HTC at temperature 298K and mass flow rate 0.033kg/s. The investigation also carried out to study the effects of concentration on its thermophysical properties of nanofluid. ANSYS fluent software used to carry out the numerical analysis with suitable thermal boundary conditions.
Article Details
Issue
Section
Articles
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).