Effects of Reynolds Number on the Volume Concentration of Al2O3 in Ethylene Glycol
Main Article Content
Abstract
The nanofluid is suspension of nanoparticles in the base fluid used to enhance the heat transfer rate in many applications of heat transfer. The Reynolds number is the dimensionless number used to characterize the flow of the nanofluid to enhance the heat transfer rate. The current study, the effects of Reynolds number on 0.01% volume concentrations of the aluminium oxide (Al2O3) nanoparticles in the ethylene glycol through the flow in the pipe are investigated. In the study, ethylene glycol is considered as the base fluid. The thermophysical characteristics of the Al2O3/EG nanofluid were determined in the current work using a cylindrical copper pipe with an 8 mm diameter and 400 mm length. The heat transfer coefficient (HTC) and Nusselt number were calculated for the Reynolds number varied from 200 to 1200, considering nanofluid inlet temperature of 298 K and constant heat flux at the wall surface of pipe 1100 W/m2 K. The findings showed that the HTC and Nusselt number of the nanofluid flow in the pipe increased as the Reynolds number increased. Further, an exponential correlation was proposed for variation of the Reynolds number with HTC and Nusselt number for the obtained results. ANSYS Fluent software was used for the analysis of the nanofluid flow though pipe.
Article Details
Issue
Section
Articles
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).