Numerical Analysis of a Semi-Infinite Solid with Temperature Dependent Thermal Conductivity using Truly Meshfree Method
Main Article Content
Abstract
This article presents Meshless Local Petrov-Galerkin (MLPG) method to obtain the numerical solution of linear and non-linear heat conduction in a semi-infinite solid object with specific heat flux. Moving least square approximants are used to approximate the unknown function of temperature T(x) with Th(x). These approximants are constructed by using a linear basis, a weight function and a set of non-constant coefficients. Essential boundary condition is imposed by the penalty function method. A predictor-corrector scheme based on direct substitution iteration has been applied to address the non-linearity and two-level ï± method for temporal discretization. The accuracy of MLPG method is verified by comparing the results for the simplified versions of the present model with the exact solutions. Once the accuracy of MLPG method is established, the method is further extended to investigate the effects of temperature-dependent properties.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).