Aerodynamic Simulation, Thermal and Fuel Consumption Analysis of Hydrogen Powered Fuel Cell Vehicle
Main Article Content
Abstract
This paper presents design, analysis and development of a highly aerodynamic and a near zero emission single seater three wheeler unfrozen hawk prototype vehicle that is powered by hydrogen fuel cell. The vehicle is designed with a tadpole configuration and gullwing doors to achieve low drag and a streamlined half body. The pressure and velocity distribution with an optimal value of drag coefficient are established using computational fluid dynamic analysis. The hydrogen consumption and heat generated in the fuel cell and brushless direct current motor are analyzed for various cases. The study concluded to show a reduction in power and fuel consumption of designed prototype vehicle to give better fuel economy and overall performance.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).